
Properties of ideal Gaussian glass-forming systems

Andreas Heuer1 and Aimorn Saksaengwijit1,2

1Institute of Physical Chemistry, University of Münster, Corrensstrasse 30, D-48149 Münster, Germany
2King Mongkut’s University of Technology, Thonburi, Thailand

�Received 24 February 2008; published 16 June 2008�

We introduce the ideal Gaussian glass-forming system as a model to describe the thermodynamics and
dynamics of supercooled liquids on a local scale in terms of the properties of the potential energy landscape
�PEL�. The first ingredient is the Gaussian distribution of inherent structures, the second a specific relation
between energy and mobility. This model is compatible with general considerations as well as with several
computer simulations on atomic computer glass formers. Important observables such as diffusion constants,
structural relaxation times, and kinetic as well as thermodynamic fragilities can be calculated analytically. In
this way it becomes possible to identify a relevant PEL parameter determining the kinetic fragility. Several
experimental observations can be reproduced. The remaining discrepancies in the experiment can be qualita-
tively traced back to the difference between small and large systems.
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I. INTRODUCTION

The understanding of the dynamics of supercooled liquids
is still far from being complete �1–4�. A lot of insight has
been gained from simulations. For example, in real space the
microscopic nature of dynamic heterogeneities has been
clarified �5–11�. Using the framework of the potential energy
landscape �PEL� a lot of insight has been also gained in
configuration space �12,13�. A key aspect is the use of inher-
ent structures �ISs�—i.e., local minima of the PEL. Upon
minimization basically all configurations can be mapped
onto an IS. In this way the regular dynamics can be mapped
on a hopping dynamics between ISs �14,15�. Physically, this
mapping can be interpreted as a removal of the vibrational
degrees of freedom. However, as explicitly shown in �16� the
properties of the structural relaxation remain identical for
sufficiently low temperatures. Generally speaking, the map-
ping onto the ISs can be interpreted as a coarse-graining
procedure. At low temperatures the IS dynamics displays
many correlated forward-backward jumps between adjacent
ISs. In a further coarse-graining step it is possible to define
metabasins �MBs� by an appropriate merging of adjacent ISs
�17–21�. In this way the effect of correlated forward-
backward motion has basically disappeared.

A key question deals with the relation between thermody-
namics and dynamics. For example, the empirical Adam-
Gibbs �AG� relation �22�

��T� = �0 exp�− BAG/Tsc�T�� �1�

relates the configurational entropy sc to the local relaxation
rate �. A further relation between thermodynamics and dy-
namics is formulated via the fragilities. In the spirit of the
thermodynamic fragility as discussed in �23,24� one can de-
fine the thermodynamic fragility index via �25�

mthermo = − �g

Sc���g�
Sc��g�

, �2�

where Tg=1 /�g �choosing kB=1� denotes the glass-transition
temperature. Furthermore, the kinetic fragility is defined as

mkin = d ln ��/d�Tg/T� . �3�

Qualitatively, it denotes the slope of the relaxation time �or
viscosity� in the Angell plot �26,23�. Empirically, one finds a
significant correlation between the kinetic and thermody-
namic fragilities �23�. In principle, the kinetic fragility may
also be defined for the diffusion constant. Due to violation of
the Stokes-Einstein relation �27�, minor variations of the
value of mkin will be present. Furthermore, it turns out that
for the set of all glass-forming systems one observes a sig-
nificant correlation between mkin and the degree of nonexpo-
nentiality, expressed, e.g., by the exponent �KWW of the
stretched exponential function �28�. If one restricts oneself,
however, to the set of all molecular glass-forming systems
�excluding in particular network-forming systems and poly-
mers�, the residual correlation is very weak �−0.28� and the
values of �KWW are restricted for most of the systems
��80%� in that work to a relatively small regime between
0.5 and 0.62 �28,29�. In contrast, the network-forming sys-
tems are characterized by nearly exponential relaxation and
small values of mkin.

In the language of ISs or MBs the thermodynamic prop-
erties at constant volume are to a large extent determined by
their energy distribution G�e�. For many systems it has been
shown numerically that the distribution of ISs can be de-
scribed by a Gaussian �30–33�. Even for BKS-SiO2 the dis-
tribution is Gaussian, albeit displaying a low-energy cutoff in
the range of accessible temperatures for computer simula-
tions �34�. Furthermore, it turns out that the distribution of
ISs and MBs is nearly identical in the relevant regime of
low-energy states �20�.

Within the PEL approach it is possible to relate the ther-
modynamic and the dynamic aspects �19–21,35�. This is
based on the observation that the escape rate from a MB can
be expressed in terms of its energy—i.e., ��e ,T�. Further-
more, it turns out that the temperature dependence of the
diffusion constant, D�T�, can be fully expressed in terms of
the average local escape rate. As a consequence, knowledge
of G�e� and ��e ,T� allows one to predict D�T�. A similar
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type of relation between energy and mobility can be found,
e.g., for the trap model �36�.

The goal of this work is to elucidate the properties of a
system with a Gaussian distribution G�e� of MBs. The func-
tional form of ��e ,T� is rationalized by different models,
discussed in the literature, and at the same time by compari-
son with previous computer simulations on the binary-
mixture Lennard-Jones �BMLJ� and silica �BKS-SiO2� sys-
tems. On this basis we define an ideal Gaussian glass former
�IGGF�. For the IGGF several observables can be determined
analytically such as the temperature-dependent diffusion
constant and relaxation time, its kinetic and thermodynamic
fragility, and its nonexponentiality. In this way it becomes
possible, e.g., to elucidate the relevant PEL parameters
which determine the fragility. In Sec. II the IGGS is intro-
duced, and in Sec. III its main properties are calculated. We
end with a critical discussion and a summary in Sec. IV.

II. DESCRIPTION OF THE IDEAL GAUSSIAN
GLASS FORMER

A. Thermodynamics

Of crucial importance for the properties of a glass-
forming system is the number density of ISs, denoted G�e�.
Here we always consider a system with N particles. For
many different systems, studied via computer simulations, a
Gaussian density of ISs has been found �32,33,37,38�—i.e.,

G�e� = exp��N�
1

�2��2
exp�− �e − e0�2/2�2� . �4�

A notable exception is BKS-SiO2. This system is character-
ized by a low-energy cutoff �39�, which gives rise to a
fragile-to-strong crossover �39,40�. In principle, for the cal-
culations, shown below, the effect of a low-energy cutoff can
be incorporated �29�. Here we mainly concentrate just on the
case of a purely Gaussian density of ISs.

For a closer discussion one has to take into account that
the average curvature around the minima may depend on e.
For different systems it turns out to a very good approxima-
tion that one has a linear energy dependence for the free
energy Fharm�e� related to the harmonic vibration in a well
�30–32,41–44�. This can be written as

Fharm�e� = const − �harme . �5�

The constant �harm is a material constant. The meaning of the
sign of �harm is visualized in Fig. 1.

The Boltzmann distribution peq�e� describes the probabil-
ity to be �at a randomly chosen time� in an IS with energy e.
peq�e� is proportional to G�e�exp�−�e� when �harm=0. Tak-
ing into account the curvature-effect, introduced above, one
finds

peq�e� 	 Gef f�e�exp�− �e� , �6�

with the effective density

Gef f�e� 	 G�e�exp�− Fharm�e�� 	 exp�− �e − e0,ef f�2/2�2�
�7�

and e0,ef f =e0+�harm�2. Thus the presence of an energy-
dependent average curvature can be incorporated by a shift
of the Gaussian distribution of states.

The standard definition of the configurational entropy is
−�ipi ln pi where the sum is over all states �not energies�.
Mapping this relation onto the description in terms of ener-
gies one obtains

Sc�T� =� de peq�e�ln�G�e�/peq�e��

=� depeq�e�Sc�e� −� de peq�e�ln peq�e� . �8�

For the G�e� and peq�e�, obtained for the Gaussian distribu-
tion, one obtains from the first term

Sc�T� = N� − �1/2��2�� − �harm�2. �9�

For large N one expects that �2	N due to the central-limit
theorem. Then Sc�T� becomes extensive as expected. In con-
trast, the last term in Eq. �8�, which would give rise to 1/2,
can be neglected because it is not extensive and just gives
rise to a minor redefinition of � ��→�+1 /2N�.

Defining the Kauzmann temperature by the condition
Sc�TK�=0 �and �K=1 /TK�, Eq. �9� can be equivalently ex-
pressed as

TSc�T� = ��N�� + �2��K/2 − �2�harm
2 /2��T − TK� . �10�

Neglecting the temperature dependence of the second term,
this is actually the standard expression when deriving the
Vogel, Fulcher, Tamman �VFT� temperature dependence—
e.g., ln�D�T� /D0�	1 / �T−T0�, where often T0�TK is
found—from the Adam-Gibbs expression �41�. Using a simi-
lar way of rewriting the configurational entropy, this type
of argument can be already found in �41�. In any event, for
the further analysis we will use expression �9� due to its
simplicity.

B. Transitions between MBs: Models

There is a long history of models which describe the dy-
namics in configuration space on a phenomenological level
�36,45–49�. One considers a region of the viscous fluid

�
�
� � � �

� � �
� � � �

� �

FIG. 1. A sketch of the cases �harm
0 and �harm�0. Shown
are typical curvatures around representative ISs at different
energies.
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which can cooperatively rearrange via a transition state. For
the time being the initial and final states may be character-
ized by the energy of the respective ISs �or MBs�. For suffi-
ciently low temperatures the elementary rearrangement pro-
cess is considered to be activated: the system leaves a state
with energy e, crosses a high-energy transition state with rate
��e� �from now on the variable T is omitted�, and ends up in
a new state which is uncorrelated with the initial one. Dif-
ferent names can be found for essentially identical models
�e.g., trap model, free-energy model� following this scenario.

The hopping rate ��e� is characterized by two energies.
ecross denotes the energy of the ISs just after the final barrier,
which has a height V0; see Fig. 2 for the sketch. According to
the model assumptions, ecross and V0 are independent of the
initial energy e. Actually, even in more complex systems like
the random energy model one can argue via percolation ar-
guments that ecross is independent of e �50�. More generally,
in a percolationlike picture of the PEL, ecross corresponds to
the energy level above which the system finds adjacent states
with similar energies and thus does not have to increase fur-
ther in the PEL for the final relaxation. Defining Eapp�e� as
the apparent activation energy to escape from energy e, this
scenario can be written as

��e� = �0�e�exp�− �Eapp�e�� , �11�

with

Eapp�e� = ecross + V0 − e �12�

for e�ecross and Eapp�e�=V0 for e�ecross. Stated differently,
the escape for energies lower than ecross is solidlike �acti-
vated� whereas otherwise it is liquidlike �35�.

The energy-dependent prefactor �0�e� reflects possible
entropic effects. As argued in �45,51�, the prefactor �0�e�
contains an energy-dependent factor Mentro which denotes
the number of escape paths to reach a high-energy state with
energy ecross. In most models this is neglected by simply
choosing �0�e�=�0. This would be justified in case of one-
dimensional reaction paths or low-dimensional percolation
paths. A simple expression for Mentro can be formulated if
every state with energy ecross can be reached from exactly
one state with energy e �
ecross�. It is given by Mentro
=G�ecross� /G�e� �52�—i.e.,

�0�e� = �0G�ecross�/G�e� . �13�

This holds for e
ecross; in the opposite limit, one just has
�0�e�=�0. For ecross−e
e0−ecross, Eq. �13� can be approxi-
mated as

�0�e� � �0 exp��e0 − ecross��ecross − e�/�2� . �14�

For later purposes this is rewritten as

�0�e� = �0 exp��kentro�ecross − e�� , �15�

with

kentro = �e0,ef f − ecross�/�2 �16�

and

� =
e0 − ecross

e0,ef f − ecross
. �17�

This somewhat complicated way to rewrite Eq. �14� is moti-
vated in two ways. First, because peq�e� is directly related to
Gef f�e� and thus to e0,ef f �see Eq. �6��, it is more convenient
to use e0,ef f rather than e0. Second, in practice the factor �
has to be treated as an empirical parameter because the in-
crease of the entropic term �0�e� with decreasing energy may
somewhat deviate from the specific scenario, described
above. The relevant energy scales are summarized in Fig. 3.

It is convenient to introduce the shifted inverse tempera-
ture

�̃ = � − �kentro. �18�

In principle, all calculations shown in this work can be per-
formed as well for ��1. However, since the influence of the
entropic prefactor is not as important as the energetic term,
the additional complexity of the expressions is not worth the
additional information for ��1. In what follows we there-
fore always choose �=1.

Now one can rewrite Eq. �11� as

��e� = �0 exp�− �̃�ecross − e��exp�− �V0� �19�

and, for a Gaussian density of states,

e
cross

V
0

e *

FIG. 2. Sketch of the multistep escape process, including the
definition of V0. The barrier with the star is supposed to be the
critical barrier beyond which pback
0.5.
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FIG. 3. Sketch of the energies, introduced in the text. A possible
difference between G�e� and Gef f�e� is neglected.
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peq�e� 	 Gef f�e�exp�− �e�

	 exp�− �e − ecross + �2�̃�2/2�2� . �20�

When comparing Eq. �19� with simulations one has to take
into account that the simulated system may contain more
than one elementary system. Each subsystem is characterized
by an energy ei and e=�ei. For a superposition of M inde-
pendent subsystems the total hopping rate �M�e� is just the
sum of the individual hopping rates ��ei�. To a first approxi-
mation one may assume that the energy e is equally distrib-
uted among the M subsystems, yielding �M�e�=M��e /M�. A
closer analysis shows that apart from another energy-
independent factor, this is indeed the correct expression �29�.
This expression for �M�e� suggests to generalize Eq. �19� to

��e� = �0 exp�− ��̃�ecross − e��exp�− �V0� . �21�

Here 1 /� is a measure of the number of elementary sub-
systems present in the specific system. This completes the
definition of the IGGF. For later purposes we introduce the
dimensionless quantity

� 	 �̃� , �22�

which will turn out to be the central quantity characterizing
the properties of the IGGF.

C. Comparison with simulations

The above scenario has been compared with simulations
of relatively small systems of the BMLJ �N=65� �20� and
BKS-SiO2 �N=99� �52� systems. This comparison has been
performed for MBs in order to have a random-walk-type
dynamics in configuration space. With ISs it would have
been impossible to express observables such as the diffusion
constant or the relaxation time just in terms of the waiting
times �20,29�. For comparison the average waiting times in
MBs of a given energy e have been determined, denoted as

��e��. Naturally, the average escape rate ��e� is then given
by

��e� =
1


��e��
. �23�

Note that this definition does not imply that the escape from
a MB with energy e corresponds to an exponential waiting-
time distribution with average waiting time 
��e��.

The simulations have fully confirmed the validity of Eq.
�21� except for a slight smearing-out effect for energies close
to ecross. Actually, the effective barriers could be identified by
a closer analysis of the relevant minima and saddles of the

PEL �20�. Actually, in �53� it has been shown that the addi-
tional barrier before the final transition �denoted V0 above�
and the barrier governing the local forward-backward motion
at low temperatures �within a MB� are roughly the same.

Very recently, de Souza and Wales have analyzed the tem-
perature dependence of the mean-square displacement,
evaluated for a fixed time � �53�. Of course, for very large �
this analysis recovers the standard diffusion coefficient. For
ambient �, which for the lowest temperatures is significantly
shorter than ��, the authors observe a simple Arrhenius be-
havior with the high-temperature activation energy V0. For
lower temperatures this approach is sensitive to the local
forward-backward motion within a MB. The barriers in this
regime are of the order of V0 so that the local processes
remain activated with the high-temperature activation en-
ergy. This strengthens the observation that it is roughly the
same value V0 which governs the additional barrier height at
low and high energies.

Furthermore, it turns out that �0�e� indeed shows an ex-
ponential dependence of energy. Interestingly, �0�ecross�
�1 /20 fs−1 is of the order of typical molecular time scales.
This also suggests that the increase below ecross is due to
entropic reasons.

The PEL parameters, obtained from the fitting, are listed
in Table I. Note that if not mentioned otherwise, from now
on all energies are expressed relative to e0,ef f—i.e., the maxi-
mum of Gef f�e�. For the analytical calculations, to be pre-
sented below, it is convenient to exclusively use Eq. �21�—
i.e., using e
ecross and �̃�0. The first relation starts to be
very well fulfilled if ecross− 
e�T����, which roughly im-
plies T
0.6 in the case of the BMLJ system and T

3600 K in the case of BKS-SiO2. In this temperature

range one also has �̃�0.
Interestingly, ecross is significantly smaller than e0,ef f. As

will become clear below, this difference is crucial for prop-
erties like the fragility. The additional barrier height V0 is
present for both the BKS-SiO2 and BMLJ systems �and has
similar height after normalization by ��. Therefore V0 cannot
be of any relevance for the question of fragility. It can be
directly extracted from the high-temperature behavior.

The observation �
1 suggests than even these small sys-
tems are not elementary. This is equivalent to the result re-
ported in �21� that a consistent mapping on an elementary
trap model is not possible.

Two major differences are evident when comparing the
BKS-SiO2 and BMLJ systems. First, the low-energy cutoff
for the BKS-SiO2 system is significantly larger than the cut-
off, dictated by entropy. Thus, the amorphous ground state is
a finite-entropy state. Second, �−ecross� /���2 is much lower

TABLE I. The thermodynamic and dynamic PEL parameters, obtained from simulation of the BKS-SiO2

and BMLJ systems.

Thermodynamic Dynamic

N � −ecut �harm � −ecross � � V0 �0

BKS-SiO2 99 3.5 eV 43.4 eV �0 1.14 37.5 eV 0.66 0.62 0.8 eV 1/�20 fs�
BMLJ 65 3.0 - −0.3 0.73 12.9 0.55 0.3 1.0 1/150
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for the BKS-SiO2 system. This means that activated pro-
cesses become relevant only for states much lower in the
PEL. As a consequence, a characteristic temperature like
TMCT should be lower for silica than for the BMLJ system.
Indeed, ��� /TMCT�	�� /TMCT�silica− �� /TMCT�BMLJ�12.2
−6.7=5.5 �54,55� and ��−ecross� /�=6.4 are similar. Further-
more, the energy dependence of �0�e� for the BKS-SiO2 sys-
tem is much more prominent.

III. DYNAMICS OF IDEAL GAUSSIAN GLASS-FORMING
SYSTEMS

A. General

The MB dynamics can be characterized by a waiting-time
distribution ���� �20�. From this one can calculate the differ-
ent moments 
�n� of ����. It has been shown in previous
work that the diffusion constant D is proportional to 1 / 
��
�19�. Within the continuous-time random-walk �CTRW� for-
malism the structural relaxation time �� can be identified
with 
�2� / 
�� �56�. Actually, very recently it has been shown
�29,57� that it is indeed fully justified to use the CTRW for-
malism to describe the dynamics of the BMLJ �N=65� sys-
tem.

Given the distribution of energies as well as the relation
between energy and mobility, one may ask whether one can
explicitly calculate 
�n�. For this purpose we first introduce
��e� as the probability density that in a series of different
MBs, visited by the system, a randomly chosen MB has en-
ergy e. Then the average waiting time is given by averaging

��e�� over all MBs—i.e.,


�� =� de ��e�
��e��

=� de ��e�/��e� . �24�

��e� is distinctly different from the Boltzmann distribution
peq�e�, which denotes that at a randomly given time the
present MB has energy e—i.e., peq�e�	��e�
��e��. Including
a normalization factor this can be rewritten as

peq�e� =
��e�

��e�
��
. �25�

Qualitatively, this relation expresses that low-energy states
�small ��e�� are often observed �at randomly chosen times�,
although their actual number 	��e� may be very small. Mul-
tiplication of Eq. �25� by ��e� and subsequent integration
yields


��−1 =� de peq�e���e� 	 
��p. �26�

Thus, the average waiting time is also related to the rate
average over the equilibrium probability distribution. Note
the different notations �
¯� as the � average versus 
¯�p as
the p average�. Using the explicit form of Gef f�e�, one ob-
tains after a straightforward integration


��−1 = �0 exp���2/2 − ���2/2�exp�− �V0� . �27�

So far, no information about the nature of the relaxation pro-
cess has entered the analysis. In the most simple case the
escape from a state with energy e is governed by a single
barrier height. Then the waiting-time distribution, related to
this energy, is just ��e�exp�−��e�t�. For the BMLJ �N=65�
system one has 1 /��2 subsystems. In the most simple pic-
ture the total energy is then the sum of two independent
subsystems, each with energy ei�e1+e2=e� and for a given
energy decomposition the total rate ��e� is given by ��e1�
+��e2�. Actually, as outlined in �29�, the normalized second
moment 
��e�2� / 
��e��2 is expected to be around 16 for T
=0.5 for two subsystems as compared to 2 for an elementary
system. The broadening of the waiting time distribution at
fixed energy is due to the fact that for a given total energy e
several decompositions e=e1+e2 are possible, each giving
rise to different escape rates. The numerically observed value
is approximately 8 �58�. This means that the BMLJ �N
=65� system behaves, to first approximation, like two inde-
pendent subsystems �each described by �=1 and variance
�2 /2 if �2 is the variance of the original system�. A possible
reason for the decrease of 16 to 8 will be given below. In any
event, in what follows we neglect this effect and postulate
that the elementary system behaves like an IGGF with �=1
and an exponential waiting time distribution at given energy.
Since the waiting-time distribution at fixed energy is a well-
defined observable in the MB approach, the subsequent cal-
culations could be easily generalized to take into account
deviations from a purely exponential behavior of the
waiting-time distribution of the elementary system.

This aspect is strongly related to the old discussion of
homogeneous versus heterogeneous relaxation �59,60�. Het-
erogeneous relaxation would simply mean that one has a
superposition of exponentially relaxing entities. Experimen-
tally it has been shown that the dynamics at the glass transi-
tion is basically heterogeneous �61�. This indicates that the
choice of an exponential waiting-time distribution is indeed
not too bad.

B. Calculation of moments

With this approximation the waiting-time distribution
���� and the distribution ��e�, reflecting the thermodynam-
ics, are related via

���� 	� de� dt��e�exp�− ��e�t���t − �� . �28�

Its different moments 
�n� can be directly calculated:


�n� =� de ��e�n ! ��e�−n

= n ! 
��
�1−n�p exp�n�V0� . �29�

For the second equality Eq. �25� has been employed.
Straightforward evaluation of Gaussian integrals yields


��/�0�m�p = exp��m2/2 − m��2 − m�V0� . �30�

The case m=1 recovers Eq. �27�. Furthermore, the case m
=−1 finally gives rise to
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�2�/
��2 = exp��2� . �31�

In most models no distinction between ecross and e0,ef f is
made. Then � can be identified with �. The relations for this
special case can be already found in the literature �36�. Note
that in this limit Eq. �27� corresponds to the well-known
1 /T2 temperature dependence, discussed, e.g., in �50�.

IV. APPLICATIONS

A. Kinetic fragility

Here we analyze the temperature dependence of 
�� �and
thus of D�T�� and in particular the fragility. The glass tran-
sition temperature is defined by the condition

�0
��Tg,K�� = 10K. �32�

Neglecting for the time being the somewhat different tem-
perature behavior of D�T� and ��T� �see below�, Tg,16
=1 /�g,16 roughly corresponds to the calorimetric Tg because
��Tg� /��T�Tg��1016. Simple expressions emerge for the
case V0=0 �corrections can be simply calculated, but only
mildly influence the results�. Using Eq. �30� a simple calcu-
lation yields

��g,K = kentro� + �2K ln�10� . �33�

In relation to the definition of Tg we use the notation mkin,K
rather than mkin �see Eq. �3�� to express the dependence on
the time scale. Then a straightforward calculation yields

mkin,K = 2K + �2K/ln�10�kentro� . �34�

In this regime the fragility depends on the dimensionless
parameter kentro�=−ecross /�. Thus, the dynamic crossover
energy is a central PEL parameter determining the fragility.
These results are visualized in Fig. 4. One can clearly see
how the fragility increases with increasing −ecross /�.

Note that Eq. �34� implies that the BMLJ system is stron-
ger than the BKS-SiO2 system if the cutoff were artificially
removed so that the PEL is purely Gaussian. The nonfragile
behavior of the BMLJ system has been already mentioned in
Ref. �62�.

Of course, since the temperature dependence of �� is in
general not identical to that of 
��, the results would slightly

differ if mkin,K is calculated for �� or � rather than for the
diffusivity.

Empirical relations to correlate the fragility with, e.g., the
Poisson ratio have been suggested �63�, but are questioned in
�64�. It would be interesting to check whether there exists a
physical connection between the observables, suggested in
that work, and the value of ecross, determining the crossover
from liquidlike behavior to solidlike behavior.

B. Relation to the AG approach

Alternatively, one can calculate the value of �g under the
assumption of the AG relation �1� and a Gaussian PEL �using
�harm=0�. Then one has to solve the equation

10K = exp��gBAG/�� − �g
2�2/2N�� . �35�

For large K one obtains

�g =
�2�N

�
−

BAG
�N

�K ln�10�
. �36�

Then a straightforward calculation yields for the fragility
�again in the limit of large K�

mkin,K =
�2�K2�ln 10�2�

BAG
�N

. �37�

Within the AG-approach the fragility depends on the density
of states—i.e., �—as well as the empirical constant BAG. A
large number of states implies larger fragility �at least for
fixed BAG, which, of course, could also depend on � �25��.

It may be interesting to compare this relation with the
fragility, Eq. �34�, obtained for an IGGF. Qualitatively, both
relations would show a somewhat similar behavior if sys-
tems with large � are related to systems with a low crossover
energy ecross—i.e., large kentro. This is not unreasonable be-
cause in the spirit of percolationlike arguments for a larger
number of ISs the system would be able to find a path with a
lower barrier to move between two low-energy ISs. How-
ever, in a strict way it will not be possible to map Eq. �37�
onto Eq. �34� because of the different K dependence. For-
mally, this problem could be solved if � decreases with in-
creasing K—i.e., going to longer time scales and thus lower
glass transition temperatures. Qualitatively this statement is
equivalent to the requirement that G�e� decay faster than a
Gaussian. This has been suggested in �65�. Physically this
might, e.g., occur as a consequence of a broadened low-
energy cutoff.

C. Thermodynamic fragility

In the spirit of the thermodynamic fragility as discussed in
�23,24� one can define the thermodynamic fragility index via
�25�

mthermo,K = − �g

Sc���g�
Sc��g�

. �38�

We obtain, using Eq. �9�,
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FIG. 4. The temperature dependence of �0
�� �	D�T�� for dif-
ferent values of the crossover energy with �=1 �the values are
given with respect to e0,ef f�.
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mthermo,K =
�2��g − �harm��g

N� − �2��g − �harm�2/2
. �39�

Note that the denominator must be positive because other-
wise the entropy of the system would be negative. Under this
condition, an increase of �kentro �which is the only relevant
dimensionless parameter, characterizing IGGF� and thus of
��g �via Eq. �33��, gives rise to an increase of mthermo and
mkin, independent of the values of �g or �. This strong cor-
relation of mkin,K and mthermo,K is in agreement with the ex-
perimental observation for most systems �23�.

Interestingly, increasing the value of �harm yields a de-
crease in mthermo,K. However, a different behavior emerges if
one includes the vibronic contribution in the entropy—i.e.,
by using Sex�T�=Sc�T�+Sharm�T� rather Sc�T�. A straightfor-
ward calculations yields Sex�T ,�harm�=Sc�T ,−�harm�, thereby
neglecting a constant and a term depending logarithmically
on � �29�. Accordingly, when defining mkin,K on the basis of
Sex�T� one obtains an increasing thermodynamic fragility for
increasing �harm, in agreement with the qualitative discus-
sion in �23�.

If the cutoff starts to influence the system, a detailed cal-
culation is no longer possible because the behavior of the
configurational entropy at low temperatures depends on the
details of G�e� at low energies. Thus, it is not surprising that
for SiO2 the thermodynamic fragility does not follow the
general trend �23�.

The present discussion complements the work by �41�
where the kinetic and thermodynamic fragilities have been
discussed with reference to the AG relation. Simulations
have also revealed a significant correlation between both fra-
gilities.

D. Relaxation properties

Here we ask for the probability S0�t� that a system in
equilibrium has not performed a hopping process until time t.
It is given by

S0�t� =� de peq�e�exp�− ��e�t� . �40�

In what follows the trivial factor exp��V0� will be omitted.
For sufficiently low temperatures the decay of this function
can be related to the structural relaxation �56,57�.

As shown in �29,66� one can approximate for intermedi-
ate times �S0�t��1 /e�

S0�t� � exp�− �t/�KWW��KWW� , �41�

with

�KWW = 1/�1 + �2 �42�

and �KWW=1 /��, where

�� = ��
e�T��� = exp�− �2� . �43�

This may justify the use of the stretched exponential as a
fitting function at least for intermediate times. This result is
insensitive to the specific form of ��e� since ��e� only enters
via ��. Note that for the IGGF the nonexponentiality tends to

increase when going to lower temperatures. Furthermore,
one can show that in very long-time decay is algebraic
�29,66�:

S0�t� 	 t−u/2�2
. �44�

One can define the �-relaxation time �� via

�� =� dt S0�t� , �45�

which corresponds to the typical time until a particle jumps
for the first time �56,57�. From Eq. �40� one immediately
obtains �also using Eq. �30��

�� = 
�−1�p = �1/�0�exp�3�2/2� . �46�

This has to be compared with the average hopping time 
��
�Eq. �27��. One obtains

��/
�� = exp��2� . �47�

Since the left side is proportional to D��, Eq. �47� expresses
the invalidation of the Stokes-Einstein relation for an IGGF.
Using the definition of the exponent a via
D�T����T�	��

a—i.e., 
��
�−1�	 
�−1��—one obtains a=2 /3.
Experimental values are smaller �e.g., 0.25 for orthoterphe-
nyl �27� and 0.23 for TNB �67��. Thus, the decoupling seems
to be too strong. Qualitatively the strong increase of �� with
decreasing temperature is due to the very-long-time tail of
S0�t�.

V. DISCUSSION AND SUMMARY

The IGGF has been introduced, based on the numerical
results for the BMLJ and BKS-SiO2 systems �except for the
low-energy cutoff for BKS-SiO2� at small system sizes. The
general concepts are also compatible with several models
proposed to rationalize the dynamics of supercooled liquids.
Thus, one naturally finds how properties such as the nonex-
ponentiality are generated.

More specifically, the key conclusions are as follows: �i�
If the cutoff-energy does not interfere, the temperature de-
pendence of the dynamics is fully captured by the value of �
�except for a trivial exp�−�V0� term�. This means in particu-
lar that at Tg an IGGF has a fixed value of �, independent of
�kentro and thus independent of its fragility. This implies via
Eq. �42� that the stretching parameter �KWW does not depend
on the fragility if determined exactly at Tg. This may ratio-
nalize the weak correlation between �KWW and mkin for the
molecular glass-forming systems, as mentioned above. Of
course, residual fluctuations are expected when the smaller-
order effects of �, � and V0 are taken into account. �ii� The
fragility of a system is to a large extent dominated by the
crossover energy ecross relative to the width of the energy
distribution—i.e., �. Systems are more fragile if the cross-
over from solidlike activated dynamics to liquidlike nonacti-
vated dynamics occurs at low energies, relative to the width
of G�e�. Of course, as soon as the low-energy cutoff of the
PEL comes into play �such as for BKS-SiO2�, the system
automatically behaves Arrhenius-like and thus is classified as
strong. This also shows that the fragility is only partly able to
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classify a glass-forming system because already the present
discussion shows that there at least two very different param-
eters ecut and ecross, which strongly influence the fragility.
�iii� Although the BMLJ data can be fit to the AG relation,
from a conceptual point of view the IGGF is not compatible
with the AG relaxation. This can be seen from the different
dependence of the fragility on K. On a qualitative level this
discrepancy could be reduced if the distribution of states de-
cays stronger than a Gaussian at the low-energy end. �iv� The
thermodynamic fragility indeed is correlated with the kinetic
fragility, albeit in a nontrivial way. Again, the systems with a
cutoff behavior �most notably BKS-SiO2� have to be dis-
cussed separately. �v� Finally, the IGGF displays nonexpo-
nential relaxation with a nonexponentiality which increases
with decreasing temperature and, in agreement with the ex-
periment, shows a violation of the Stokes-Einstein relation.

Conceptually, the presence of individual relaxation pro-
cesses naturally is attributed to small systems, reflecting the
typical length scales of cooperative dynamics during single
MB transitions. Thus, any strict comparison with simulations
in the framework of the PEL approach is conveniently per-
formed with small systems. As shown in previous work, the
diffusion constant as well as the thermodynamic properties
of the BMLJ �N=65� system only have very minor finite-size
effects when comparing with the results obtained for much
larger systems �31,68,69�. However, the structural relaxation
time as the well as the nonexponentiality has somewhat
larger finite-size effects �69�. This effect can be understood if
one assumes a specific type of coupling between adjacent
subsystems of a larger system. When some subsystem re-

laxes it may change the mobility of the adjacent subsystems
�29�. A similar idea can be already found in �36,70� and has
been also implemented in the context of the rate memory to
explain the results of multidimensional NMR experiments
�48,71–73�. In this way the very immobile regions typically
become mobile at some stage and can relax subsequently. In
some sense this idea is also related to the philosophy of the
facilitated spin models where the local mobility is also influ-
enced by the state of the neighbor spins �74–76�. The cou-
pling between adjacent subsystems can be formulated such
that the diffusion constant and the thermodynamics do not
change whereas the structural relaxation time, all moments

�n� for n�2, and the degree of nonexponentiality decrease
upon this coupling �29�. This might also explain why the
second moment for the BMLJ system is by a factor of 2
smaller than expected �see above�. In particular, the exponent
a, characterizing the violation of the Stokes-Einstein equa-
tion, approaches experimentally relevant values �29�. How-
ever, one of the key results—namely, the utmost relevance of
a single dimensionless parameter �—would still be valid. In
any event, the path back from small systems to macroscopic
systems is one of the challenges for future work. Using the
IGGS as an elementary system for such models is definitely
a reasonable starting point.
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